Decentralized Maximum-Likelihood Estimation for Sensor Networks Composed of Nonlinearly Coupled Dynamical Systems
نویسندگان
چکیده
منابع مشابه
Consistency of Maximum Likelihood Estimation for Some Dynamical Systems
We consider the asymptotic consistency of maximum likelihood parameter estimation for dynamical systems observed with noise. Under suitable conditions on the dynamical systems and the observations, we show that maximum likelihood parameter estimation is consistent. Our proof involves ideas from both information theory and dynamical systems. Furthermore, we show how some well-studied properties ...
متن کاملA Maximum Likelihood Parameter Estimation Method for Nonlinear Dynamical Systems
This paper presents an original method for maximum likelihood parameter estimation in nonlinear dynamical systems with highly correlated residuals. The method relies on an autoregressive representation of the residuals to build an estimate of the inverse of its covariante matrix. Theoretical concepts are developed and we provides a successful application of the method on a twoparameters estimat...
متن کاملchannel estimation for mimo-ofdm systems
تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...
Failure of maximum likelihood methods for chaotic dynamical systems.
The maximum likelihood method is a basic statistical technique for estimating parameters and variables, and is the starting point for many more sophisticated methods, like Bayesian methods. This paper shows that maximum likelihood fails to identify the true trajectory of a chaotic dynamical system, because there are trajectories that appear to be far more (infinitely more) likely than truth. Th...
متن کاملMaximum Likelihood Estimation of Parameters in Generalized Functional Linear Model
Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to esti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2007
ISSN: 1053-587X
DOI: 10.1109/tsp.2007.893921